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Abstract

The rising prevalence of fake news and its alarming down-
stream impact have motivated both the industry and academia
to build a substantial number of fake news classification
models, each with its unique architecture. Yet, the research
community currently lacks a comprehensive model evalua-
tion framework that can provide multifaceted comparisons
between these models beyond the simple evaluation metrics
such as accuracy or f1 scores. In our work, we examine a
representative subset of classifiers using a very simple set of
performance evaluation and error analysis steps. We demon-
strate that model performance varies considerably based on
i) dataset, ii) evaluation archetype, and iii) performance met-
rics. Additionally, classifiers also demonstrate a potential bias
against small and conservative-leaning credible news sites.
Finally, models’ performance varies based on external events
and article topics. In sum, our results highlight the need to
move toward systematic benchmarking.

Introduction

In the United States, many political pundits and media schol-
ars alike have cautioned against the rising influence of fake
news (Silverman 2017; Balmas 2014), stressing that the
spread of false information weakens the legitimacy and pub-
lic trust in the established political and media institutions.
Outside of the U.S., fake news has been tied to Brexit in
Europe (Kucharski 2016), and the rising hate, violence, and
nationalism in Indonesia (Kwok 2017). It has also been
linked to the endangerment of election integrity of Euro-
pean and Latin American nations (Fletcher et al. 2018;
Alimonti and Veridiana 2018). Indeed, fake news, backed
by armies of social bots, disseminates significantly faster
and deeper than mainstream news (Shao et al. 2017). Addi-
tionally, subsequent research also suggests that it is difficult
for the general public to distinguish fake news from credible
content. Equally alarming is that repeated exposure causes
readers to perceive false content as more accurate (Balmas
2014). Past work also shows the importance of detecting and
combating misinformation in its early phases of spread (Bu-
dak, Agrawal, and El Abbadi 2011). Thus, timely, scalable,
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and high-performing fake news detection automatons be-
come a vital component in combating fake news.

Thus far, researchers have leveraged linguistic attributes,
user network characteristics, temporal propagation patterns
of news articles, and various machine learning paradigms
to build effective models that separate fake news from
traditional news content (Ruchansky, Seo, and Liu 2017;
Liu and Wu 2018; Shu et al. 2019a; Horne et al. 2018;
Castelo et al. 2019; Yang et al. 2019). These are all valuable
contributions. Some of these novel approaches led to high
performing classifiers with exceptionally high accuracy and
F1 scores. Yet, our review also reveals a key gap: many pa-
pers lack comprehensive model performance evaluation and
error analysis steps. Here, we first review 23 distinct classi-
fiers from related work and consolidate each according to 4
major components: data source, data types, feature engineer-
ing techniques, and machine learning paradigms. We then
reached out to the authors of 17 papers and acquired a to-
tal of 5 classifiers. Next, we evaluate these models using a
few very simple procedures. Our paper makes the following
contributions:

e We show that model performance may vary drastically
based on the choice of dataset. As such, results from in-
dividual papers, especially those that use a single dataset
for evaluation, should be taken with a grain of salt.

e Additionally, classifiers generally have significantly
higher performance when trained and validated using
the common 5-fold 80/20 data split evaluation archetype
compared to validation using a set of domains never be-
fore encountered in training. This suggests that classifiers
might be learning domain-specific features as opposed to
actual distinctions between fake and traditional news.

e We show that all classifiers studied here demonstrate
significantly higher false-positive rates for right-leaning
mainstream news sites. This bias raises an important con-
cern for trust in fake news detection systems. Similarly,
articles from small credible news sites are also classified
as fake news more often than those from large sites.

e Next, the performance of classifiers can be worse follow-
ing external shocks such as scandals. This indicates that
temporal variations in classifier performance need to be



taken into consideration when taking actions based on
these predictions.

e Finally, models generally have a higher false-positive rate
when classifying news articles involving scandals, and a
higher false-negative rate for articles focused on the 2016
election (e.g., polling results).

In sum, our simple evaluation approach reveals potential
biases and significant weaknesses in existing classifiers. It
also provides a cautionary tale for real-world applications
that use these models. Our work sufficiently demonstrates
that using simple metrics such as accuracy, AUC, or F1 to
evaluate and compare models is insufficient. As a commu-
nity, we need to collectively investigate and construct a more
comprehensive performance evaluation framework for fake
news classification.

Fake News Classifiers—Review & Selection

We first review a total of 23 existing fake news classifiers
in Section . We observe that text, relational and temporality
data are the most commonly used data to construct feature-
sets: within the 23 classifiers reviewed, 17 (or 74%) exclu-
sively use 1 or more of the 3 data types. The remaining 6
use at least 1 additional data type (e.g., images). Next, we
reach out to authors of all 17 papers and obtained 5 code
repositories. We describe this subset of models in detail in
Section .

Meta-review

As shown in Figure 1, the process of building a fake news
classifier consists of 4 major decisions: i) choosing data-
sources, ii) selecting a subset of data from all available data
types, iii) deciding on the techniques that transform raw data
into features (i.e., feature engineering). These features are
bundled closely with iv) the specific machine learning algo-
rithm(s) one adopts.

Data Sources: News sites and social media platforms are
the two primary data sources. Our review shows that 12 (or
52.1%), and 15 (or 65.2%) out of the 23 classifiers use data
from news sites and social media platforms respectively,
with four (or 17.4%) using both sources.

Data Types: We show text data are by far the most com-
mon with 21 (or 91.3%) classifiers using at least some text-
based data. It’s followed by relational data (e.g., follower,
friend) at 47.8% and temporality data at 26.0% usage. A
small number of classifiers also use additional data types in-
cluding multimedia images and videos (Gupta et al. 2013;
Boididou et al. 2018). Other data types include author age,
gender, and credibility (Long et al. 2017; Shu, Wang, and
Liu 2018); website DNS records (Ma et al. 2009); web
markup and advertising (Castelo et al. 2019); and geo lo-
cation (Deligiannis et al. 2018).

Feature Engineering: A large arsenal of techniques are
available to transform raw data of varied types into usable
features.

Text Data: First, features can be extracted from text us-
ing existing theories and domain knowledge such as psy-
cholinguistic theories and frameworks (Horne et al. 2018;
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Castelo et al. 2019; Zhou and Zafarani 2019). Focusing on
news articles, these features include i) quality, complexity
and style (e.g. word count, lexicon diversity, readability),
and ii) psychological attributes (e.g., sentiment, subjectiv-
ity, biases). See (Zhou and Zafarani 2018) for a detailed
literature review. Intuitively, fake news articles are likely
to include more “clickbaity” elements—capitalization of all
words in the title, use of many exclamation marks, or adop-
tion of sharp and sentimental words (e.g., “poisoning”) in
the text. Within a social context, user profile descriptions or
user posts can be used to derive implicit features such as a
user’s personality, gender, and age (Shu et al. 2019b). These
features are also used to detect fake news. As such, this fea-
ture extraction approach often leads to highly explainable
and transparent classifiers.

Additionally, text can be transformed into i) ngrams,
commonly combined with tfidf weighting (Ahmed, Traore,
and Saad 2017; Qazvinian et al. 2011); ii) vectors, i.e.,
converting content to numeric vectors using variations of
GloVE, Skipgram, CBOW, and then word2vector, sent2vec,
or doc2vec (Riedel et al. 2017; Gravanis et al. 2019); and
iii) tensors (Guacho et al. 2018; Papanastasiou, Katsimpras,
and Paliouras 2019), which are 3-dimensional vector rep-
resentations of words or documents. Extracted features can
also undergo additional transformation steps including fea-
ture reduction.

Finally, researchers also use text to build networks (e.g.,
hashtag-hashtag or text similarity-based networks) and de-
rive graph-based features (Rubin 2018).

Relational Data: Relational data are generally used to
construct networks (e.g., follower-followee network, retweet
network, user-article bipartite network). Researchers then
use these networks to derive usable features including com-
munities, clustering coefficient, and network motifs. (Co-
letto et al. 2017; Volkova et al. 2017). Networks can also
be represented as matrices which can then be reduced
into a low-dimensional representation and adopted as fea-
tures (Ruchansky, Seo, and Liu 2017). Finally, these net-
works can be used by semi-supervised label propagation
classifiers (Tacchini et al. 2017).

Temporality Data: Many existing studies use temporality
data to build classifiers (Jin et al. 2014; Liu and Wu 2018,;
Ruchansky, Seo, and Liu 2017; Do et al. 2019). For in-
stance, Do et al. (2019) and Ruchansky et al. (2017) parti-
tion user interactions (posts) about news based on the times-
tamps. Posts within the same partition are treated as a single
text document. Liu and Wu (2018) model the propagation
path of each news story as a multivariate time series which
are then used as features. Additionally, similar to relational
data, propagation networks can also be used to extract useful
graph-based features such as motifs.

Machine Learning Paradigms: Reviewed classifiers can
be categorized as supervised, semi-supervised or unsuper-
vised. Work by Katsaros et al. (2019) provides an overview
of existing classifiers categorized with respect to paradigms.
Further, supervised models can be subcategorized as neural
network (Volkova et al. 2017; Riedel et al. 2017; Ruchan-
sky, Seo, and Liu 2017; Wang et al. 2018; Ma, Gao, and
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Figure 1: An Overview of the Fake News Detection Process. This process consists of 4 major choices in: i) datasources, ii) data
types, iii) feature engineering techniques, and iv) machine learning paradigm.

Wong 2018; Zhang, Dong, and Yu 2019) or non-neural net-
work based approaches (Ahmed, Traore, and Saad 2017;
Horne et al. 2018; Castelo et al. 2019; Gravanis et al.
2019). Semi-supervised models use label propagation tech-
niques (Jin et al. 2014; Tacchini et al. 2017; Rubin 2018;
Guacho et al. 2018). Last, the unsupervised paradigm is very
rare—we identified only one related prior work (Yang et al.
2019).

Representative Fake News Classifiers

From the 17 models, we see that 3 include a code repository
link in their original publication. We then emailed authors
of the remaining 14 papers, and 5 of them responded. Fi-
nally, we include 2 of the 5 models in our subsequent anal-
ysis I In sum, we collect a total of 5 distinct classifiers:
BTC, CSI, HOAX, NELA, and RDEL. The code reposito-
ries (including our code) are available at https://github.com/
Ibozarth/fakenewsMPE.

BTC: This classifier (Gravanis et al. 2019) uses only news
article text data. The authors extract 70 stylistic and psy-
cholinguistic features (e.g., number of unique words, sen-

ITwo of the classifiers (Bourgonje, Schneider, and Rehm 2017;
Guacho et al. 2018) are omitted due to our lack of experience with
the programming language (e.g., MatLab). For the 3rd, our perfor-
mance analysis reveals that it likely has an over-fitting issue due to
its HTML-based features. To elaborate, we use the pre-generated
HTML-based features and model provided by the paper. We train
the model on 90% of the domains and validate on the remaining
10% (see the bydomains archetype in Section ). The accuracy score
provided in the paper using 5-fold training and validation is 0.86.
In comparison, here, accuracy scores are 0.84 and 0.75 for training
and validation respectively. Further, the AUC scores are 0.92 and
0.69, suggesting overfitting. We also used the leave-one-out train-
ing and validation approach. Observations are similar. Given the
overfitting and that collecting HTML features for 0.7M webpages
in our dataset (see Section ) is also a costly task, we choose to omit
this model from our analysis.
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tence readability, and sentiment) and geo-location features.
Additionally, they transform each word into a vector using
GLOVE and then sum the vectors to generate a vector rep-
resentation of each article. The authors use Adaboost (Pe-
dregosa et al. 2011) and concatenation of listed features to
model fake news.

CS1I: For each news article, this paper (Ruchansky, Seo,
and Liu 2017) first partitions user engagements (e.g., tweets)
with an article based on timestamps of the posts. All engage-
ments within a partition are treated as a single document.
They then use LSTM to capture the temporal patterns of the
documents. Additionally, the authors also build a user-user
network with the edge weight being the number of shared
articles between pairs of users. This network’s correspond-
ing adjacency matrix is then used to generate lower dimen-
sional features that capture the similarity of users’ article
sharing behavior. Finally, both sets of features are integrated
together using another neural network layer.

HOAX: The authors (Tacchini et al. 2017) construct a
user-article bipartite graph based on whether a user liked or
shared an article or a post. They then use semi-supervised
harmonic label propagation to classify unlabeled articles.
This approach is based on the hypothesis that users who fre-
quently like or share fake or low-quality content can be used
to identify the quality of unlabeled content.

NELA : This classifier (Horne et al. 2018) uses the follow-
ing 3 distinct dimensions of text-based features to predict
fake news: i) style features (e.g. exclamation marks, verb
tense, pronoun usage), ii) psycholinguistic features such
as sentiment scores using LIWC, SentiStrength (Thelwall
2017) and iii) content complexity features including read-
ability (Mc Laughlin, 1969), dictionary size, and average
word length. We refer readers to the original paper for the
complete list of 100+ features. The authors use Linear Sup-
port Vector Machine (SVM) and Random Forest as their
classification algorithms.



CLF Source Text Relational | Temporal | Other Number of Fea- | Machine Learning
tures Paradigm
BTC News stylistic; psy- | X X geotext 70 (e.g., stylis- | supervised; non-NN;
Sites cholinguistics; features tic); 300 | AdaBoost
co-ntent complexity; (from text) | (word2vec);
word2vec N (geotext)
CSI Social doc2vec user-user YES X 122 supervised; NN;
Media LSTM
HOAX | Social X user-article | X X X semi-supervised;
Media propagation
NELA | News stylistic;  psycholin- | X X X 122 supervised; non-NN;
Sites guistics; co-ntent RandomForest
complexity
RDEL | News ngram (tfidf); cosine | X X X 4001 supervised; NN;
Sites similarity between ti- Multi-layer  Percep-
tle and text tron

Table 1: Overview of Classifiers based on i) data source, ii) data types, iii) feature engineering, and iv) machine learning

paradigm

RDEL: This model (Riedel et al. 2017) first tokenizes text
from news articles and extracts the most frequent ngrams
(unigram, bigram). Then, for each news article, it con-
structs the corresponding term frequency-inverse document
frequency (TF-IDF) vectors for article title and body sep-
arately, and computes the cosine similarity between the 2
vectors. Finally, the authors concatenated the features to-
gether and use Multilayer Perceptron (Pedregosa et al. 2011)
to classify fake and real news articles.

The data source, data types, feature engineering process,
and machine learning paradigm for each of the 5 classifiers
are summarized on Table 1. As shown, this set of classi-
fiers encompasses both neural network and non-neural net-
work based supervised learning paradigms, as well as the
semi-supervised paradigm. Additionally, it includes all 3
most common data types: text, relational, and temporal-
ity. Focusing on feature engineering, the classifiers collec-
tively cover the most common text feature engineering ap-
proaches: theory-driven, ngrams, word2vec, and doc2vec.
Similarly, they also cover some common relational data fea-
ture engineering techniques: user-article network, user-user
network. Notably, these classifiers do not include popular
approaches such as leveraging user profile descriptions, or
follower-followee networks. Overall, however, we argue that
this set of classifiers is sufficiently representative.

Data

We use two datasets in this study. The summary statistics
are available on Table 2. Both datasets use Media Bias Fact
Check (Van Zandt 2018) as ground truth to label whether a
domain is a fake news site. Media Bias Fact Check contains
one of the most comprehensive list of fake and mainstream
news sites and is also used by many related work (Starbird
2017; Main 2018). Prior research shows that the choice of
ground truth can have a significant effect on downstream
analysis (Bozarth, Saraf, and Budak 2020). Therefore, we
note that our study is only the first step towards building a
comprehensive fake news model evaluation framework. Fu-
ture work should consider multiple ground truth labels.
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Election-2016 NELA-GT
Time Period 12/2015-01/2017  02/2018-10/2018
# Domains 1390 130
# Fake News Domains 335 (24%) 38 (29%)
# Articles 231.6K 304.1K
# Fake News Articles 31.3K (16%) 37.4 (14%)
# Tweets 1.16M
# Fake News tweets 141.9K (12.2%)
# Users 215.2K
# Fake News Users 37.9K (18%)

Table 2: Basic Statistics for Datasets

Election-2016: This dataset is primarily focused on the
2016 U.S. presidential candidates and consists of both social
media data and news articles. Social media data collection
is described in detail in Bode et al. (2020). The data col-
lection was performed using Sysomos MAP. For any given
day between December, 2015, and January 1, 2017, this
dataset includes i.) 5,000 tweets randomly sampled from
all tweets that included the keyword “Trump”, and ii) 5,000
tweets similarly sampled from all that mentioned “Clinton”.
The webpages dataset (Budak 2019) includes the content of
the webpages shared in the Twitter dataset described above.
For each tweet with an external URL, the dataset includes
a record with: i) the shortened URL, ii) the original URL,
iii) domain name, iv) title of the document, v) body of the
document, (vi) the date of the tweet, and vii) Twitter ac-
count id of the user sharing the URL. Here, we use Media
Bias Fact Check to identify the list of fake and mainstream
news sites present in Election-2016, and filter out non news-
related sites. As shown on Table 2, Election-2016 contains
231.6K unique articles (16% of which are fake news), and
1.16M tweets (12.2% of which contain links to fake news
articles) shared by 215.2K unique users (18% users shared
at least 1 fake news article).

NELA-GT: This dataset (Ngrregaard, Horne, and Adali
2019) contains articles scraped from 194 news sites between
02/2018 and 11/2018. The list of domains is collected by
aggregating existing lists of fake and mainstream news sites



provided by other researchers and organizations. News con-
tent is scraped via the RSS feed of these sites. Each domain
has source-level veracity labels from 1 or more independent
assessments (e.g., Media Bias Fact Check, News Guard). We
note that 130 out of 194 domains have labels from Media
Bias Fact Check.

As shown on Table 2, NELA-GT contains 304.1K unique
articles (14% of which are fake news).

There are several key distinctions between Election-2016
and NELA-GT. First and foremost, news articles in Election-
2016 are collected through tweets mentioning Trump or
Clinton. As such, these articles are almost exclusively about
one or both candidates. In comparison, creators of NELA-
GT directly access and scrape the websites which likely re-
sulted in more diverse news topics. Next, Election-2016 con-
tains 1.4K distinct news sites, 10 times that of NELA-GT,
yet the latter has 72.5K more news articles. Indeed, the me-
dian number of articles per domain is 13 for Election-2016
and 1.12K for NELA. Finally, over 30% of all fake news do-
mains active in 2016 have since become defunct (Bozarth,
Saraf, and Budak 2020), thus they are in Election-2016 but
not NELA-GT.

Additional Auxiliary Data: We also obtain the follow-
ing data for each news site: 1) average monthly traffic using
similarweb.com, a popular web analytics platform (Similar-
Web 2019; Singal and Kohli 2016); ii) age using whois.com,
a domain name registrar database (Mueller and Chango
2008); and finally, iii) ideology using Media Bias Fact
Check. Additionally, for each article, we also include its pub-
lication date (For Election-2016, an article’s date is approxi-
mated using the timestamp of the earliest tweet that included
it).

Data Preprocessing: For each dataset, we first filter out
all news articles 1) without a title, or ii) with fewer than 10
words in the article body. Next, we aggregate 4.1K words
and phrases representing news sites names > (e.g., “Daily
Dot”, “CNNPolitics”); for each news article, we remove
matching words and phrases from the article.

Analysis

In this section, we first compare and contrast classifier per-
formance using different evaluation archetypes. Then, we
conduct an in-depth error analysis focusing on domains and
articles of varied attributes. Finally, we examine model per-
formance and bias tradeoffs.

Performance Overview

We first underline the 3 most common training and per-
formance evaluation archetypes basic, forecast, and
bydomains. We then present our evaluation metrics and
results.

(1) Basic N-folds (basic): Using this common ap-
proach, data are split into N-folds for training and cross-
validation. Here, for each dataset, we use 5-fold (i.e., 80/20)
training and validation data split.

2Here, we use the list of news site names provided by Media
Bias Fact Check.
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(2) Forecasting into the Future (forecast): Here,
given a time ¢, classifiers are trained on fake and mainstream
news articles that were written before 7, and tested against
those that were written after . For each dataset, we ran-
domly sample 10 dates within its data collection period and
split data into training and validation accordingly.

(3) Predicting Never Before Encountered Domains
(bydomains): In this archetype, classifiers are trained on
articles from 90% randomly sampled domains and tested
against articles from the remaining 10% that are not present
in training. We repeat this sampling process 10 times for
each dataset.

Evaluation Metrics: We use AUC, F1 (fake news arti-
cles as the positive label), precision, and recall to evaluate
model overall performance. We omit accuracy due to label
imbalance in the datasets (Huang and Ling 2005).

Results: Results are summarized in Figure 2. As shown,
we denote classifiers using different colors. Additionally,
each grid represents a distinct dataset and performance met-
ric combination. Within a given grid, outer-rings represent
higher performance. Note that NELA-GT doesn’t provide so-
cial media data, so analyses for CST and HOAX are not avail-
able for this dataset. Overall, we see that classifier perfor-
mance varies considerably based on the i) dataset, ii) evalu-
ation archetype, and iii) metric.

(i) Dataset Effects: The average AUC scores for BTC un-
der the basic evaluation archetype are 0.78 and 0.96 when
the datasets are Election-2016 and NELA-GT respectively, a
considerable difference. We also observe a similar but less
significant effect for RDEL and NELA. One possible expla-
nation is that Election-2016 is specifically focused on Don-
ald Trump and Hillary Clinton. Thus, news content from
fake and mainstream publishers in this dataset is presumably
much more similar compared to NELA-GT, which scrapes
the entire RSS feed of news sites daily. The higher arti-
cle similarity likely contributes to a performance drop in
content-based models.

(ii) Archetype Effects: RDEL and BTC both perform con-
siderably better under basic evaluation compared to pre-
dicting new domains (i.e., bydomains). For instance,
when dataset is NELA-GT, the AUC score for RDEL is 0.97
using basic archetype but 0.72 using bydomains (sim-
ilar patterns for BTC). One possible explanation is that, de-
spite removing news site name-related tokens (e.g., “daily
beast”, “nytimes”’) from data, certain remaining word tokens
may still be indicative of a domain and its practices (e.g.,
New York Times has the custom of using the word “Mr.”
when addressing the President of the United States (Cor-
bett, P. 2017)). Thus, if word2vec or ngram-based classi-
fiers such as BTC and RDEL rely heavily on site-specific fea-
tures for training, they may perform poorly when validating
on newly encountered domains. Similarly, we also see that
BTC and RDEL perform worse in forecast than basic.
Findings here are complementary to prior research (Horne,
Ngrregaard, and Adali 2019) which demonstrates that the
performance of text-based models decreases over time due
to changes in news content. Interestingly, NELA, the only
other exclusively text-based classifier, has more comparable
AUC scores across the archetypes—the AUC scores are 0.80,
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Figure 2: Performance Overview For All Classifiers. As shown, we separate the classifiers by colors. Additionally, each grid
represents a distinct dataset and performance metric combination. Within a given grid, datapoints that lie in the outer-rings
represent higher performance. For instance, the upper left corner grid contains each classifier’s AUC scores for the Election-
2016 dataset. We see that RDEL, colored in green, has a significantly higher AUC (data point lies on the outer-ring) when
validated against the basic archetype compared to forecast and bydomains.

0.73, and 0.82 for basic, bydomains, and forecast
respectively when dataset is Election-2016. We note that
NELA only uses the stylistic and psycholinguistic features of
articles. As such, it may be more robust to site-specific lin-
guistic eccentricities. Compared to text feature-only classi-
fiers, both CST and HOAX—the classifiers that only partially
or not-at-all rely on text content— have more comparable
AUC scores across all archetypes.

Out of the 3 archetypes, basic is the most common. That
is, model performance is typically examined using 5-fold
cross-validation with 80/20 training and validation data split.
Yet, if researchers only assess classifiers’ performance based
on basic, they may not discover the potential weakness their
models have against never before encountered domains. In
fact, our results demonstrate that the word2vec and ngram
text feature-based models maybe especially need to be eval-
uated against bydomains.

Evaluation Metric Effects: The ranking of classifiers
change based on whether we use AUC or FI. For in-
stance, when the dataset is Election-2016 and the archetype
is bydomains, we show that CSI has rank = 2 using
AUC and rank = 4 using FI. Additionally, all classifiers ex-
cluding CST generally have significantly higher recall than
precision. In fact, CSI has the highest precision across all
classifiers and the lowest recall. As such, the definition of
“best-performing” is dependent on whether one prefers pre-
cision over recall. Generally, high precision is preferred in
high stake circumstances. For instance, Google and Face-
book both have banned hundreds of fake news sites from
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using their Advertising services (Paresh 2016). In this con-
text, a credible mainstream news site would suffer consid-
erable economic drawbacks if it’s falsely labeled as fake.
As such, CST should be the preferred model despite having
a low recall score. Alternatively, classifiers with a high re-
call can serve as a useful filter. As an example, researchers
and organizations interested in identifying new fake news
domains can first apply a high recall model to obtain a list of
presumptive fake news domains, and then manually review
each site to label true fakes.

In sum, we demonstrate that the performance of classifiers
varies considerably from case to case as a result of the dif-
ference in 1) dataset, ii) evaluation archetype, and iii) metric.

Domain and Context-specific Error Analysis

In this section, we conduct in-depth error analysis us-
ing false-negative rate (FNR) and false-positive rate
(FPR). Here, for each ¢ € {BTC, CSI, HOAX, NELA,
RDEL}, we first i) assess whether models perform better or
worse on classifying domains of particular subcategories.
Next, we then explore ii) errors that are of significant in-
terest in the context of the 2016 election.

Domain-level Error Analysis: Here, we examine error
rates based on domain i) ideological-leaning, ii) age, and
iii) popularity. To elaborate, conservative elites have long
criticized both the academia and tech firms for having a lib-
eral bias (Gross and Simmons 2006). Thus, we aim to deter-
mine whether classifiers indeed contain biases such as hav-
ing a higher fnr for liberal-leaning fake news sites, and/or a



higher fpr for conservative-leaning mainstream news sites.
Similarly, a model’s performance may also vary based on a
domain’s age and popularity (e.g., incorrectly classifying re-
cently created websites with small viewerships as fake news
at a higher rate compared to mature domains with heavy traf-
fic). We note that analysis here is focused on the Election-
20167 dataset and bydomains archetype. We focus on this
archetype for potential impact. While tech giants and online
platforms have blacklisted hundreds of fake news sites, re-
ports show that owners of these domains are ramping up for
the 2020 election by creating new sites (Wingfield, Isaac,
and Benner 2016; Soares 2019).

Ideological Biases: For each article i in a given valida-
tion set, we first assign i to a bin using i’s corresponding
domain’s ideology {unknown, conservative, center,liberal }.
Then, for each classifier ¢, we calculate ¢’s fpr and fur for
each bin separately. Here, we denote fpr for the liberal(left)-
leaning and conservative(right)-leanings bins as fpr(/) and
fpr(r) respectively. Next, to evaluate “liberal bias”, we ex-
amine i) whether liberal-leaning fake news sites on aver-
age are significantly more often classified by ¢ as credi-
ble news (i.e., fnr(l) > fnr(r)), and ii) whether articles by
conservative-leaning mainstream news sites on average are
significantly more often classified by c¢ as fake news (i.e.,
fpr(l) < fpr(r)).

To elaborate, we apply Student’s T-test (Gibbons and
Chakraborti 1991) on the distributions fpr(V,l,c) and
fpr(V,r,c). Here, fpr(V,l,c) is classifier ¢’s false-positive
rates for the liberal-leaning bin / across all the validation
sets V of the bydomains archetype. For results that are
statistically significant (p — value <= 0.05), we compute
the mean differences between the distributions and then plot
the values. We repeat this process for false-negative rates.
As shown in Figure 3a, all classifiers have a higher false-
positive rate for articles from conservative-leaning credible
news sites. Furthermore, all results remain significant, ex-
cept for NELA, even after adjusting the p-values using the
Holm-Bonferroni method (Hochberg 1988) to account for
multiple hypothesis testing. One possible explanation for
this bias is that there are significantly fewer liberal-leaning
fake news sites available for training. Another explanation
is provided by Benkler, et al. (2018). They argue in a re-
cent book that some traditional right-leaning news outlets
participated in the dissemination of fake news by echoing
and giving platform to false claims initially produced and
campaigned by fake news sites. This might bring into ques-
tion the ground truth definition as opposed to the classifier
results. As a whole, results in this section demonstrate that
researchers should actively consider potential ideological bi-
ases when building and evaluating fake news classifiers.

Domain Age: Similar to the previous section, we first par-
tition each domain i based on its age into 3 bins: i) unknown
(i.e., DNS record is not available), ii) recent (<= 3years),
and iii) mature (> 3year). We then compare fnr and fpr be-
tween the bins and assess whether the mean differences are

3We also repeat the analysis using the NELA-GT dataset. Re-
sults are largely insignificant given that NELA-GT only contains
130 domains. In comparison, Election-2016 has 1.4K.
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(c) Domain Popularity

Figure 3: Mean Differences in Error Rates.We first assign
each prediction from the validation dataset into groups using
its corresponding domain i) ideology, ii) age, or iii) popular-
ity. We then compare the classifiers’ false-positive and false-
negative error rates for each group of predictions. Here, the
x-axis denotes the classifiers, and the y-axis denotes each
classifier’s mean differences in error rates between a selected
group and the baseline group (e.g., subtract a classifier’s av-
erage false-positive rate for liberal-leaning sites by the av-
erage for conservative-leaning sites). The baseline groups
are {conservative, mature site, large site} for domain ideol-
ogy, age, and popularity respectively. Note*, results that are
not statistically significant are removed. Further, results that
are insignificant after adjusting p-values using the Holm-—
Bonferroni method (Hochberg 1988) are colored in light-
blue; finally, results that remain significant after adjustment
are in darkblue.

statistically significant. As shown in Figure 3b, both BTC
and HOAX have a significantly higher fpr for recent domains.
In other words, the 2 classifiers more often label articles by
recently created credible news domains as fake news. A po-
tential explanation is that newly created mainstream news
domains have published fewer articles and thus models have
less data to train on. Alternatively, newer mainstream sites
might have language and consumers that are better aligned
with fake news outlets. Finally, for robustness check, we
also repeat the evaluation and set the partitions into recent
(<= 5years) and mature (> Syears). We observe similar pat-
terns.

Domain Popularity (web-traffic): For each dataset, we di-
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Figure 4: Article Topic-level Error Rates. The x-axis de-
notes the classifiers, and the y-axis denotes a topic’s average
Jfpr (or, fur). Topic are differentiated by color. Further, if a
pairwise comparison between 2 topics is statistically signif-
icant even after adjustment for multiple hypothesis testing,
the pair is linked by a gray line. For instance, the mean dif-
ferences in false-positive rate between the pairs (election,
scandal) and (scandal, policy) are significant for RDEL.

vide domains based on web-traffic into: 1) unknown (no web-
traffic data on similarweb.com), ii) small (web-traffic per-
centile calculated to be between 0%-33% percentile), iii)
median (33%-66% percentile), and iv) large. We again com-
pare far and fpr across the bins. As shown in Figure 3c, all
classifiers, except for HOAX have a significantly higher false-
positive rate for small websites. This bias potentially causes
small but legitimate news sites to be more often incorrectly
labeled as fake news domains. Finally, for robustness check,
we also repeat the evaluation and set the partitions into small
(0%-50% percentile) and large (50%-100% percentile). We
observe similar patterns.

Context-specific Error Analysis (2016 election):  As pre-
viously stated in Section , the Election-2016 dataset is col-
lected specifically to study the 2016 U.S. presidential candi-
dates. Here we identity 2 additional error analyses that are
of significance to the election. First, prior research (Bozarth,
Saraf, and Budak 2020) has demonstrated that the preva-
lence of fake news temporarily decreases after scheduled
high-profile events (e.g. presidential debates). Though, re-
sults are inconclusive for scandals (e.g., Trump Hollywood
tape). We expect the fake news articles produced shortly af-
ter these shocks to differ from those published in other time
periods. Accordingly, we examine model performance for
such articles. Furthermore, political communications studies
show that news coverage of different topics have varied im-
pact on a voter’s knowledge, decision-making, and trust in
the government (Praino, Stockemer, and Moscardelli 2013;
Van der Meer, Hakhverdian, and Aaldering 2016). As such,
we also aim to determine whether model performance dif-
fers across article topics. In sum, we conduct error analysis
based on i) the types of external events, and ii) article top-
ics. We note that analysis here is focused on the forecast
archetype given shocks are temporal events and news cover-
age of different topics varies over time.

External Events: We first obtain a list of scandals and
planned key events of Trump, Clinton, or both that occurred
in the general election from ABC News and The Guardian.
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The list, ordered chronically, includes: Republican nomi-
nation (07/18), Democrat nomination (07/28), Clinton “de-
plorable” and “pneumonia” scandals (09/09), first debate
(09/26), Clinton email involving Wikileaks and Trump Hol-
lywood tape scandals (10/07), second debate (10/09), Clin-
ton email scandals involving the FBI (10/28, 11/06), and fi-
nally, the election day (11/08). Here, nominations, debates,
and election day are assigned to scheduled and others to
scandal. We also randomly select 10 dates and assign them
as baseline for comparison purposes. Next, given classi-
fier ¢, for each day r € {07/18/2016,07/28/2016...}, we
train ¢ using articles before 7, and validate ¢ on the arti-
cles that were published and shared within x days after ¢
where x € {3,5,7}. We again compute fpr and fnr for articles
published right after scheduled, scandal events and compare
these error rates to that of baseline. Surprisingly, we see that
error rates are generally comparable across different types
of external shocks for all classifiers except for HOAX, which
has a considerably higher false-positive rate for predicting
articles published shortly after scandals (the mean difference
between fpr for scandal and baseline is 10.0%). In our pa-
per, HOAX is the only model that exclusively adopts a user-
article network-based classification approach. It’s possible
that users may have temporarily altered their news-sharing
behavior right after scandals. In comparison, results from
text-based models suggest that the linguistics features of ar-
ticles published after shocks are not significantly different
from those in baseline.

Article Topics: We obtain the topic for each article in
the Election-2016 dataset from related work (Bozarth, Saraf,
and Budak 2020). We refer readers to the original paper to
review the detailed topic-modeling process which assigns
49% of total articles into 15 unique topics (the remaining
51% is labeled as other). Here, we further cluster documents
into broader topics {election,scandal, policy,other} *. We
observe that 20.3%, 8.9% and 19.2% of all articles belong in
election (e.g., news involving polling results), scandal (e.g.,
news involving Clinton’s pneumonia incident), and policy
(e.g., the economy) respectively.

Next, we calculate and compare the average fpr and fnr
rates for the topics. Results are summarized in Figure 4. The
x-axis denotes the classifiers, and the y-axis denotes a topic’s
average fpr (or, fnr). Topics are differentiated by color. Fur-
ther, if a given pair of topics, e.g. (scandal,election), has a
significant difference in mean error rates even after p-value
adjustment, the pair are then linked together by a gray line.
As shown, all text-based models and HOAX have a signif-
icantly higher fpr for scandal compared to both policy and
election. That is, articles written by credible sites about scan-
dals are significantly more often mislabeled as fake. We also
see that, for 4 out of the 5 models, fake news articles focused
on the election are more often labeled as credible compared
to those about scandals or policy.

What does this mean? Past studies in voter decision-
making demonstrate that scandals have a strong and long

4We merge {‘email’, ‘clinton-health’, ‘sexual’, ‘clinton-wst’,
‘benghazi’} as scandal, and { ‘russia’, ‘economy’, ‘abortion’, ‘cli-
mate’, ‘mid-east’, ‘d&i’, ‘security’, ‘religion’} as policy.



lingering impact on voter choice (Praino, Stockemer, and
Moscardelli 2013). As such, perhaps misclassifying articles
involving scandals would have a more detrimental down-
stream impact. On the other hand, erroneous election-related
coverage such as fake polling results and endorsements
also affect voter behavior (Van der Meer, Hakhverdian, and
Aaldering 2016). It is important to note one caveat. The
ground truth labels are provided at the outlet level. It is en-
tirely possible that fake news sites generally publish accu-
rate election-related articles. Regardless, our analysis shows
that one might need to adjust prediction w.r.t. the propor-
tions of topics covered to determine the quality of news out-
lets. Further, we highlight that researchers invested in build-
ing effective models should consider the impact/weight of
different types of misclassifications (e.g., misclassifying a
credible celebrity gossip piece as fake news may be harm-
less, but incorrectly labeling vaccine-related misinformation
as credible is harmful).

Performance and Bias Trade-off

In this section, we examine error bias and performance
trade-off with respect to i) domain ideology, ii) domain
age, iii) domain popularity, iv) external events and v) article
topic 7. In other words, we ask if a classifier has the highest
F1 (or, AUC) score, but significantly favors liberal-leaning
news sites, does there exist another classifier which has a
slightly worse F'1(or, AUC) score but lower or no significant
bias with respect to domain ideology?

Here, we first rank all classifiers based on their average
F1 scores for the validation datasets, and denote the one
with the highest F'1 as cx. We then add models with worse
F'1 scores but lower bias (with respect to domain ideology,
domain age, etc.) than cx into the set C;; (these are the alter-
native options). Models that have worse F'1 scores in addi-
tion to higher bias when compared to cx are excluded from
analysis. Next, we plot the F'1 scores and error bias mea-
surements of cx and C,; in Figure 5. Here, the z-axis de-
notes F'1 scores, the x-axis and y-axis denotes fnr and fpr
based bias respectively. That is, the x-axis and y-axis values
are equivalent to the mean differences calculated in Section
and summarized in Figure 3. A higher absolute value of x
and/or y implies a higher bias. We note that results for event
shocks are omitted given that none of the alternative models
provides a notable reduction in bias.

As shown in Figure 5a which focuses on ideological bias,
HOAX has the highest F1 = 0.42, yet it has fpr = —0.40
and fnr = 0.57. In other words, hoax erroneously classifies
articles published by mainstream conservative-leaning news
sites as fake news 40% more often compared to articles by
mainstream liberal-leaning publishers. Further, it also mis-
classifies articles by liberal-leaning fake news sites as cred-
ible 57% more often compared to articles by conservative-
leaning fake sites. We can reduce this bias by choosing the
alternative NELA, which has F'1 = 0.39, fpr = —0.10, and
fnr = 0.0. In other words, by trading a small reduction of
F1, we can significantly reduce ideological bias. Focusing

SWe focus on the topics scandal and election given that mean
differences in error rates between the pair are the highest.
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on Figure 5b, we see that trade a small drop in F'1 from
0.42 to 0.39 can lead to a modest reduction in domain age-
based bias. For domain popularity (Figure 5c) and article
topic (Figure 5d), however, any reduction in bias requires a
substantial drop in performance.

Discussion

We reviewed 23 existing fake news classification models and
provided a comprehensive overview of the current state of
this research field. Furthermore, by reaching out to the au-
thors of 17 papers, we collected a representative set of 5
classifiers that we used for additional performance evalu-
ation and error analysis. The results reveal important con-
cerns about generalizability. Performance of fake news clas-
sifiers varies significantly from one dataset to another, from
one evaluation archetype to another, and from one evaluation
metric to another. We also observed important bias: articles
from small and/or conservative-leaning mainstream sites, for
example, were more often labeled incorrectly as fake news.
Furthermore, we also showed that model error rate varies
across different topics. Finally, we illustrated that, in some
cases, we can trade the model that has the best overall per-
formance but high-bias with another that has a slightly worse
performance but a substantially lower bias.

There are several limitations to our work. First, we used
the list of fake and mainstream news sites provided by
Media Bias Fact Check. Yet, many other sources such as
News Guard provide domain-level veracity labels. Related
work (Bozarth, Saraf, and Budak 2020) has highlighted that
the choice in ground truth labels affects downstream obser-
vations. As such, future work should evaluate models us-
ing different ground truth of fake and mainstream news sites
to ensure robustness. Similarly, certain sources (Zimdars,
M 2018) also partition fake news domains into more fine-
grained subcategories (e.g. junk science, state-sponsored
misinformation sites, clickbait). Understanding whether ex-
isting models perform better on some subcategories com-
pared to others can also provide valuable insights into po-
tential model bias and weaknesses.

Despite these limitations, we believe this work takes an
important step towards reproducibility and replicability in
fake news classification. We invite other scholars to build
on this effort and help collectively build towards a well-
formulated and comprehensive evaluation framework for
fake news detection. As a very first step, we argue that our
community needs to make datasets and code repositories
available to others. In our case, we were able to acquire
only 5 out of the 17 published classifiers. The code repos-
itories for the 5 classifiers and our own code is available
at https://github.com/Ibozarth/fakenewsMPE. Easier access
would allow our community to compare and contrast differ-
ent datasets and algorithms. Such access would also enable
our community to develop a robust evaluation framework
more quickly.

A simple guideline on model evaluation: Here, we pro-
vide a simple checklist for researchers interested in build-
ing robust and effective models. (1) Models should be eval-
uated using multiple datasets and ground truth labels pro-
vided by various parties and may be of varying granularity.
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(2) Individuals interested in creating a model with the in-
tent of long-term use should adopt variations of the forecast
archetype to train and validate the model. Similarly, indi-
viduals should use the bydomains archetype if the aim is to
label never-before-encountered websites with unknown fac-
tualness. (3) Focusing on metrics, researchers can also con-
sider using the precision-recall curve (Boyd, Eng, and Page
2013) to optimize precision over recall (or vise versa) if a
model’s particular usage warrants it (e.g., favoring precision
over recall if the impact of a false-positive is high). (4) In-
grained prejudices are shown to be present in machine learn-
ing models used in real-world applications (O’neil 2016).
When such biases come to light, they can significantly raise
the public’s distrust in automatons. As such, using domain-
expertise to identify potential high-cost biases and evalu-
ate the model for these biases are crucial. Finally, (5) if
the highest-performing model is indeed biased, researchers
should consider a trade-off between maximizing overall per-
formance and reducing potential biases.

We note that this guide is far from being a comprehen-
sive framework. Indeed, it is commonplace machine learn-
ing best-practice guidance. Yet, our analysis revealed that
these simple guides have yet to be fully followed in this im-
portant area of research so far.
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