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Abstract

We propose a novel website structure based domain-level
fake news detection model that has performance results sur-
prisingly comparable to that of existing content-based meth-
ods. Through feature analysis, we highlight that fake news
sites have more clustered subpages and more ads links,
whereas traditional news sites are more substantive and more
likely to contain staff links. We then illustrate that the struc-
tural model has a higher overall false positive rate compared
to content-based methods, which have a higher false nega-
tive rate for domains that are more recent, more popular, and
is conservative-leaning. Additionally, we also show that all
model performance is dependent on the strictness in defini-
tions of fake and traditional news sites. Specifically, model
performance is higher when these definitions are more restric-
tive. Finally, we demonstrate that the performance of existing
content-based models improve significantly by incorporating
structural features, particularly when the definitions for fake
and traditional news sites are lax.

1 Introduction
In the United States, many political pundits and media schol-
ars alike have cautioned against the rising influence of fake
news (Silverman, 2017; Balmas, 2014), stressing that the
spread of false information weakens the legitimacy and pub-
lic trust in the established political and media institutions.
Outside of the U.S., fake news is also culpable of contribut-
ing to Brexit in Europe (Kucharski, 2016), the rising hate,
violence, and nationalism in Indonesia (Kwok, 2017), and
endangering the election integrity of nations in Europe and
Latin America (Fletcher et al., 2018; Alimonti and Veridi-
ana, 2018). Indeed, fake news, backed by armies of social
bots, disseminates significantly faster and deeper than main-
stream news (Shao et al., 2017). Additionally, subsequent
research also suggests that it is difficult for the general pub-
lic to tell fake news apart from credible content and that re-
peated exposure causes readers to perceive false content as
more accurate (Balmas, 2014). Thus, timely, scalable, and
high-performing fake news detection automatons become a
vital component in combating fake news.
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Thus far, researchers have leveraged linguistic attributes,
user network characteristics, news articles’ temporal prop-
agation patterns, and deep-learning methods to build effec-
tive models that separate fake news from traditional news
content (Zhou and Zafarani, 2018). Some methods classify
fake news at article-level (Horne and Adali, 2017; Riedel
et al., 2017; Vosoughi, Roy, and Aral, 2018; Shu et al.,
2017) whereas others at domain-level (Yadav et al., 2010;
Zahedi, Abbasi, and Chen, 2015). In this paper, we propose
a novel website structure based model that detects fake news
at domain-level. We then compare and contrast our model
with existing content-centric benchmark classifiers. Our pa-
per makes the following contributions:

• We first introduce a new taxonomy of fake and traditional
news definitions using various boundaries rules. We then
use it to consolidate and assign existing fake and tradi-
tional news domains identified by varied contributors into
conceptually distinct subsets. The taxonomy also enables
us to assess the robustness of model performance w.r.t dif-
ferent definitions of fake and traditional news sites.

• Next, we describe a novel website structure based
domain-level fake news detection model and show that its
performance is surprisingly comparable to content-based
predictors. Further, by examining feature weights, we ob-
serve that fake news domains appear to have a more clus-
tered subpage network and more ads links. In comparison,
mainstream news sites have more unique subpages thus
are more substantive. Likewise, through error analysis, we
show that content-based models have a higher false nega-
tive rate for domains that are younger, more popular, and
is conservative-leaning. In contrast, our model has a lower
false negative rate in these 3 dimensions, and a slightly
higher overall false positive rate.

• Additionally, we also illustrate that classifier performance
is dependent on the taxonomy we introduced. Generally,
all models perform better when the definitions for fake
and traditional news sites are more restrictive.

• Finally, we show that the performance of existing content-
based models improve significantly when combined with
structural features, especially when definitions for fake
and mainstream news sites are lax.



2 Related Work
Both the academia and industry have been putting in sub-
stantial resources to study and understand the characteristics
of fake news in the hope of neutralizing its influence (Tam-
buscio et al., 2015; Vosoughi, Roy, and Aral, 2018; Vargo,
Guo, and Amazeen, 2018). This ongoing effort includes both
manual and automated approaches for detecting fake news.

For instance, in the industry, leading social media and
tech firms including Facebook and Twitter (Hunt, 2017;
Heath, 2016) rolled out features to use third party inde-
pendent fact-checkers to assess the factualness of news ar-
ticles and to alert users of “disputed information”. In the
academia, scholars have proposed the following machine
learning approaches for automated fake news detection: i)
using content-based features (Horne and Adali, 2017; Riedel
et al., 2017) such as psycholinguistic attributes and writing
style; ii) leveraging network characteristics such as user-to-
article linkages (Tacchini et al., 2017), or network propaga-
tion patterns (Kwon et al., 2013); or iii) a combination of
the two (Volkova et al., 2017; Buntain and Golbeck, 2017).
Recently, deep learning based methods have also been pro-
posed (Roy et al., 2018; Wang, 2017). Some of these pro-
posals have translated into various automated tools and plat-
forms for real-life applications including i) Hoaxy (Shao et
al., 2016), a platform that visualizes the spread of both fac-
tual and doubtable claims or statements on Twitter, ii) the
NELA-toolkit (Horne et al., 2018), a tool that uses content-
based feature to classify and detect fake news article, iii) BS
Detector (2017), a web-based browser plugin that searches
all the links on a given webpage for references to unreliable
news domains aggregated by Zimdars et al. (2016).

These fake news detection models and platforms were
trained and built using various data sources: i) the set of
popular fake news articles aggregated and published by Buz-
zfeed.com on Facebook during 2016 U.S. election (Silver-
man, 2016), ii) LIAR (Wang, 2017) which includes 12.8K
annotated short statements sampled from politifact.com,
iii) CREDBANK (Mitra and Gilbert, 2015), a large scale
crowdsourced dataset of approximately 60 million tweets
with annotated credibility scores, iv) selected articles from
Factcheck.org and Snopes, and finally, v) various fake news
domains lists (Zimdars, 2016; Politifact Staff, 2018).

In this paper, we build on these valuable contributions.
We first consolidate existing fake and traditional news do-
main lists, and propose a new taxonomy of fake news defini-
tions. This way, instead of relying on only one definition/list
of fake news, we are able to identify the robustness of fake
news classification methods w.r.t. such choices. We then in-
troduce a novel website structure based domain level fake
news detection model. Finally, we compare and contrast our
classifier with existing benchmarks.

3 Data
We use 3 types of data: i) lists of fake and traditional news
sites, and ii) homepages and subpages of the news sites
present in the aforementioned lists, iii) webpages of news
articles collected using the URLs embedded in the tweets
about the presidential candidates during the 2016 election.

Lists of Fake and Traditional News Sites: We use the
5 distinct fake news lists and 3 traditional news list from
both the academia and the press collected by Bozarth et
al (2019). Fake news lists are from Zimdars et al. (2016),
Allcott, Gentzkow, and Yu (2018), PolitiFact (2018), Dai-
lyDot (2018), and MediaBiasFactCheck (2018). Traditional
news lists include Guo and Vargo (2018), Alexa (2019), and
MediaBiasFactCheck (2018). These lists contribute to 1884
aggregated fake news sites, 8238 traditional news sites, and
a combined total of 10K news sites. We refer readers to the
original paper for a detailed description of these lists.

Homepage and Subpages: For each website i in the lists
from the previous section, we use scrapy (2016), a Python
crawler library, to scrape the content of i’s homepage. Using
this process, we obtain 8006 homepages 1. We filter out do-
mains with little content 2 and/or are for sale (see details in
Section 5.1). This results in 7627 homepages. Next, for each
of these homepages, we then use BeautifulSoup (Richard-
son, 2007), an XML parser, to aggregate the set of links con-
tained in the homepage and filter out the subset of links lead-
ing to external websites. Next, we recursively crawl the sub-
pages associated with the remaining links and extract their
content to aggregate additional links. We repeat this recur-
sion 3 times (i.e. a depth of 3 with the homepage at depth=0).
We collect a total of 2.1 million unique subpages.

News Article Webpages and Tweets: We obtain 174K
unique articles shared by 711K Tweets about Clinton or
Trump between December 31, 2015, and January 1, 2017 on
Twitter from Bozarth et al. (2019). Each article has a record
with: i) the shortened URL, ii) the original URL, iii) domain
name (e.g. nytimes.com), iv) title of the document, v) body
of the document, and (vi) the corresponding tweet object.
All URLs match one of the domains in the aforementioned
fake and traditional news sites lists.

4 Taxonomy of News Site Definitions and
Gold Standard Label Space

Prior research has demonstrated that the attributes of
supervised-learners (e.g. performance) are significantly de-
pendent on the quality of gold standard labels (Lease, 2011).
Within the context of fake news classification, the gold stan-
dard labels used by existing tools and classifiers differ. For
instance, Horne et al. (2018) get fake news articles from Bur-
foot and Baldwin (2009), and Buzzfeed, they then filter out
articles not from the fake news domains listed by Zimdars
et al. (2016). Riedel et al (2017) use the dataset provided by
fakenewschallege.org which originated from Craig Silver-
man’s list of top fake news sites (2016). While both mod-
els predict at article-level, their data were restricted by fake
news domain lists. Additionally, the BS Detector (2017) col-
lects and detects fake news at domain-level.

1The remaining 2K domains either timed-out during scraping or
returned 404 errors (Not Found), 502 (Bad Gateway), 503 (Service
Unavailable), et cetera.

2We remove domains with < 1000 in character count of actual
text; 178 or 2.2% domains are removed here.



Given these considerations, in this section, we first intro-
duce a taxonomy of fake and traditional news definitions
using various boundary rules (or, strictness in definition).
We then consolidate and reassign domains aggregated by
Bozarth et al. (2019), described in Section 3, into 7 distinct
fake news lists and 2 traditional news lists. Finally, we pro-
vide additional insights into the characteristics of these lists.

Fake news lists with varied strictness in definition: In-
tuitively, if a domain is included by multiple fake news do-
main lists, then this domain has met the various criteria
or definitions set by the corresponding list contributors. In
other words, if a domain is recorded by multiple lists, there
is a consensus that it is a fake news site. Similarly, fake news
scholars employ mixed rules to divide websites into subcat-
egories such as fake, bias, junksci, hate, et cetera (Zimdars,
2016). Thus, a domain that’s assigned by multiple lists into
the fake subcategory should be more decidedly fake than an-
other that’s assigned to fake fewer times. Finally, a subset
of the domains present in these lists is clearly noted to have
both questionable articles but also credible content (e.g. do-
mains that belong to the unreliable subcategory in the list by
Zimdars et al.). Given these observations, we use 3 types of
rules to impose rigor in the definition of fake news sites. We
define the following:
• Domains included by at least 1, 2, or 3 fake news lists.

1. LOOSE 2. LST |2 3. LST |3
• Domains assigned by at least 1, 2, or 3 fake news lists into

the fake subcategory.
4. FAKE|1 5. FAKE|2 6. FAKE|3
• Domains suggested by at least 1 list to contain some false

claims but also credible content.
7. MIXED
The visualization of the 7 sets of fake news domains, gen-

erated using the aforementioned taxonomy, and their sizes
are shown in Figure 2.

Traditional news lists with varied strictness in definition:
Similarly, we also impose boundaries on what’s considered
a traditional news site and define the following:
• Domains listed by at least 1, or 2 traditional news lists.

1. LOOSE(T ) 2. LST |2(T )
The sizes for LOOSE(T ) and LST |2(T ) are 8238 and 1008.

For our paper, we compare and contrast our structure-
based models against existing baseline models (e.g. perfor-
mance and performance-stability) using each golden labelset
pair ( f , t) where f ∈ {MIXED,LOOSE,LST |2,LST |3,
FAKE|1,FAKE|2,FAKE|3}, t ∈ {LOOSE(T ),LST |2(T )}.
Results obtained can give us more insights into how differ-
ent classifiers behave when trained on fake and traditional
news sites labels generated using varied definitions.

Additional Observations: Here, we provide 2 highlights
that demonstrate the differences between generated lists: i)
Jaccard similarity, and ii) prevalence.

Jaccard similarity scores, defined based on the set of do-
main overlap, between each pair of fake news lists are shown
in Figure 1a. We observe the maximum score is 0.6 (between

(a) Jaccard similarity between
lists of fake news sites gener-
ated using varied definitions.

(b) Fake news prevalence using lists
of fake and traditional news sites
generated using varied definition.

Figure 2: Fake News with Varied Strictness in Definition.
For instance, LST |2 is the set of domains listed by at least 2 fake news lists and
FAKE|2 is the set assigned by at least 2 lists into the fake subcategory.

FAKE|3 and LST |3). The median score is only 0.42, sug-
gesting these lists are significantly different.

Given ( f , t), we measure the prevalence of fake news
using |s f |

|s f |+|st | , where |s f | and |st | as the total number of
tweets, or shares, containing URLs from domains in f and
t. As shown in Figure 1b, depending on f and r, over 40%
(when using the most lax definition for fake news sites) or
less than 3% (when using the most restrictive definition) of
all news articles shared on are from fake news sites. Con-
ceptually, prevalence generated using (LOOSE,LST |2(T ))
and (FAKE|3,LOOSE(T )) can serve as upper and lower
bounds on what you would find using existing raw lists. Ad-
ditionally, we observe domains in MIXED contribute to a
large fraction of tweet shares, suggesting that low-quality
news content (though, not necessarily fake), were shared fre-
quently during the 2016 election.

5 Models
In this section, we first introduce 3 novel structuremod-
els: i) s1|basic, ii) s2|subpage and iii) s3|complete. We
then describe existing baseline fake news classifiers pro-
posed by other papers including: iv) NELA (Horne et al.,
2018), and v) RDEL (Riedel et al., 2017). Finally, we up-
date baseline predictors by including structural features from
s3|complete; we refer to the modified baseline+ models
as vii) NELA+, viii) REDL+, and ix) voting.

5.1 Structure-based Model Using Homepage
In this subsection, we outline all the features of s1|basic gen-
erated using a website’s homepage: i) URL characteristics,



ii) homepage auxiliary data, and iii) homepage HTML ele-
ments and paths.

URL Characteristics: For each website i, we gener-
ate the following features: htt psi = {1,0}, su f f ix counti,
domain lengthi, and top leveli = {1,0} where top level ∈
{com,org,net,edu,gov,other}. To elaborate, a website’s
URL typically contains a protocol which is generally either
“https” or “http”; the former is a secure protocol the later
unprotected. A news site that uses “https” suggests better
privacy and website validity, thus we include htt psi. Next,
a URL also has a top-level domain, and to ensure better
high-level website categorization, certain top-level domains
are restricted to specific entities (e.g.“.gov” is restricted
to government websites and “.edu” to established educa-
tional institutions), therefore we incorporate top leveli. Fur-
ther, prior research on phishing (Alkhozae and Batarfi,
2011) demonstrates that malicious websites often attempt
to fool people by using domains closely resembling those
of well-known sites. For fake news sites, we see that “abc-
news.com.co”, an identified fake news site, is a clear at-
tempt to confuse users with the legitimate “abcnews.com”.
The former has an additional domain suffix compared to the
later which can be differentiated by su f f ix counti. Finally,
easy-to-remember and short domain names are increasingly
harder to find and more expansive to own (Pinsky, 2017) so
we also include domain lengthi.

(a) Basic HTML represen-
tation of a webpage.

(b) DOM tree representa-
tion of the webpage in Fig-
ure 3a. An example tagpath
is html→ body→ h1

Homepage Auxiliary Data: We presume that mainstream
news organizations possess more financial resources, thus
their websites are likely better designed and managed com-
pared to fake news sites. Webpages are represented by
underlying HTML objects (see Figure 3a), and a well-
designed webpage can manifest in the form of having more
responsive front-end scripts and elaborate style sheets in the
HTML object. Additionally, mainstream news organizations
can include certain links in their homepage that may be less
common in fake news sites (e.g. job opportunities). Here, we
divide these auxiliary features into 2 subtypes: i) homepage
style and scripts, and ii) homepage link categories.

Homepage Style and Scripts: For a given website i and
tag s, where s ∈ S and S = {meta,script,style,noscript,
embed, params,ob ject} is a set of common HTML tags
used for programming scripts, style, and metadata. We write
scnt

i and slen
i as the total number of s in i′s homepage and the

aggregated character count of the inner HTML text in s.

Homepage Link Categories:. Mainstream news sites are
likely to include routine links such as privacy policies,
contact form, about us page, career opportunities, donation
information, and subscription links in their homepage.
In comparison, a prior study by Starbird (2017) suggests
that many fake news sites were created in order to ”sell
overpriced vitamins” to its viewers, thus fake news sites are
likely to have more ads or an online store. Here, let C1 =
{privacy,ads,contact,about,career,donation,subscription,
store}, and c1 ∈C1. for each domain i, we set c1

i = 1 if there
is a matching clickable short link3 in i’s homepage4. As an
example, the variable careeri = 1 indicates that i’s home-
page contains a link that leads to job postings. Similarly, we
also derive the top 100 most common 1,2-grams5 using only
text in short links of all domain homepages, filtering out the
tokens in C1. We denote this list as C2. Let c2 ∈C2, we set
c2

i = 1 if there is matching short link in i’s homepage.

Homepage HTML Tags and Path A DOM tree (as
shown in Figure 3b) is a tree structure model that represents
an HTML document (i.e the underlying layout of a web-
page). In this subsection, we define features associated with
DOM tree elements and tree paths.

Element Tags: HTML documents generally contain a
head, body and footer section. Each section then contains
additional nested web elements, or tags. Common web tags
can be broadly divided into seven categories: i) text and font,
ii) images, iii) frames, iv) form elements, v) links or navi-
gation, vi) lists, and vii) multimedia (W3schools Contribu-
tors, 2019). Here, for s1 ∈ {header,body, f ooter}, and s2 ∈
{text, image, f rames, f orm, links, lists,multimedia}, we de-
note cnt(s1,s2) as the total number of tags from category s2

that exist in section s1. Likewise, depth(s1,s2) is the max
tree depth of tags from category s2 that exist in section s1.

Tags Path: DOM tree path features have been shown to be
effective in detecting phishing websites (Joshi et al., 2003).
More specifically, impostor-websites are known to mimic or
replicate the HTML template of an authentic website in or-
der to trick users. Within the context of fake news, we ob-
serve certain fake news domains have the exact same home-
page layout (e.g. vaccines.news and mediafactwatch.com).
Here, given a domain i’s homepage DOM tree, we deter-
mine all the paths from the root (i.e. the < html > tag) of the
tree to each leaf node as denote it as Pi = {p0, p1...}. Refer-
encing Figure 3b, an example tagpath is html→ body→ h1.
For Pi, We calculate i) total tagpaths in Pi, and ii) total unique
tagpaths. Further, given |Pi|= {|p0|, |p1|..} where |pi| is the

3Here, we only use links that have fewer than 20 charac-
ter count in the displayed text to avoid news article links (i.e.
link <a>politics</a>is included, but <a>super long article title
name</a>is excluded).

4We use the following keywords for matching: about (about),
privacy (privacy), donate (donat, “support us”), contact (contact),
career (“work with”, “work for”, “join our team”, “for us”, “job”),
staff (“staff”, “our team”, “contributor”), store (“store”, “shop”,
“buy ”, “product”), and ads (“adverti”, “ ad”). We obtain these key-
words by manually searching through the most common 1,2-grams.

5For instance, “politics” is one of the common terms appeared
in a lot of links (e.g. https://nytimes.com/politics/)



Figure 4: Note, Figure 4a): Traditional news domains are in red,
fake in green. An edge exists between 2 domains if their tagpath
cosine similarity >= 0.9. Figure 4b): three node motifs.

(a) (b)

length of tagpath pi, we also calculate iii) average and iv)
max length of |Pi|, v) gini coefficient (Yitzhaki, 1979), vi)
skewedness and vii) kurtosis of |Pi|. Additionally, by treat-
ing each tagpath as a text token, we use the bag-of-words
approach used in text analysis (Wallach, 2006) to calculate
cosine similarities, cosi, j, between each pair of Pi and Pj
where domain i 6= j. We observe that 2923 domains have
cos>= 0.9 with at least 1 other domain. We manually check
groups of these domains and remove 201 that are onsale6.

Finally, to gain additional insights into using tagpaths as
features, we also use Gephi (Bastian, Heymann, and Ja-
comy, 2009) and the Fruchterman Reingold layout (1991)
to plot the graph generated using domains from LOOSE
and LST 2|(T ) that also have cos >= 0.9 with at least 1
other domain (from the same 2 lists) in Figure 4a. Domains
from LOOSE are colored in green and LST |2(T ) in red.
As shown, we see several large clusters of traditional news
domains and smaller clusters of fake news domains. This
suggests that certain subsets of traditional news sites (e.g.
columbiatribune.com and morningsun.net) share the same
homepage template. Same for fake news sites.

5.2 Structure-based Model Using Subpages
In this subsection, we describe all features of s2|subpage
generated using a website’s subpage-to-subpage linkages.
To elaborate, each website has a homepage and many addi-
tional subpages. By randomly sampling 10 fake news sites,
we observe that the majority of them have limited naviga-
tion depth which differs from well-known news sites. We
postulate that differences in the subpages networks between
mainstream and fake news sites can be leveraged to differ-
entiate them. Here, we assign features into 2 subcategories:
i) characteristics of the entire network, and ii) motifs.

We use the following process to generate a subpage-to-
subpage network. For each website i, we define a directed
graph Gi = {Vi,Ei}where V is the entire set of crawled web-
pages. Let u∈V , v∈V , and u 6= v, a directed edge eu,v exists

6These domains which share the same template and are being
sold by www.networksolutions.com,www.mydomaincontact.com,
et cetera

in E if there is a clickable link from the subpage u to v.
Network Characteristics: Given i, we determine i) the size
of the network (|Vi|), ii) the average number of unique links
per subpage ( |Ei|

|Vi| ), iii) the local clustering coefficient, iv) be-
tweenness centrality, normalized and non-normalized Gini
coefficients (Yitzhaki, 1979) for the entire v) indegree and
vi) outdegree distributions, vii) number of strongly con-
nected components, viii) the size of the largest strongly con-
nected component, and ix) number of communities in Gi us-
ing the Louvian (De Meo et al., 2011) method. These are
common metrics used to analyze social networks. Their def-
initions, operationalization, and applications can be found in
work by Wasserman, and Easley&Kleinberg (1994; 2010).
Motifs: Network motifs, as shown in Figure 4b, are small
subgraphs that frequently occur in graphs (Milo et al., 2002).
That is, motifs are like lego pieces of large complex net-
works. Leskovec et al. (2006) demonstrate that the fre-
quency distribution of motifs differ for networks of var-
ied categories (e.g. book vs. music recommendation net-
works). Here, we extract the number of motifs for Gi using
snap (Leskovec and Sosič, 2016), a Stanford network analy-
sis library. Given a node size of three, there exist 16 unique
motifs as shown in Figure 4b. For Gi, we calculate the to-
tal number of motifs and write them as Mi = {mi,1,mi,2, ...}
where mi,1 is the total number of motif type 1 (as shown in
Figure 4b) normalized by the number of edges |E|.

5.3 Structure-based Model Complete
We aggregate all features in s1|basic and s2|subpage into a
single model s3|complete; it contains features generated us-
ing a domain’s homepage (i.e. URL characteristics, home-
page auxiliary data, and homepage HTML elements and
paths) as well as subpage-to-subpage linkages (network
characteristics and motifs).

5.4 Baseline and Baseline+ Models
We first describe 2 existing baseline models, NELA and
RDEL, that use content-based features to classify fake and
mainstream news 7. We then describe baseline+ models
that combine baseline models with structural features.

News Landscape (NELA) Toolkit: This classifier is pro-
vided by Horne et al. (2018), and we denote it as NELA.
It uses the following 3 distinct dimensions of text-based
features to predict false news content: i) style features in-
cluding punctuation (e.g. exclamation marks), verb tense,
pronoun usages, et cetera, ii) psycho-linguistic features
such as sentiment scores using LWIC (Pennebaker, Fran-
cis, and Booth, 2001), SentiStrength (Thelwall, 2017), et
cetera, and iii) content complexity features including read-
ability (Mc Laughlin, 1969), dictionary size, average word
length. We refer readers to the original paper for the com-
plete list of 100+ features. We note that Horne et al. use Lin-
ear Support Vector Machine (SVM) (Suykens and Vande-
walle, 1999) and Random Forest (Liaw, Wiener, and others,
2002) as their classification algorithms.

7We also contacted Volkova et al. (2017) to request their
model’s code repository.



Ngram-based Model: This model is proposed by Ridel
et al. (2017) and we write it as RDEL. The authors first
tokenize text from news articles and extract the most fre-
quent vocabularies 8. Then, for each news article, they con-
struct the corresponding term frequency-inverse document
frequency (TF-IDF) (Ramos and others, 2003) vectors for
article title and body separately, and compute the cosine sim-
ilarity between the 2 vectors. Finally, the authors use Multi-
layer Perceptron, implemented in scikit-learn (Pedregosa et
al., 2011), to classify fake and real news articles.

Baseline+ Models: We append all structure features from
s3|complete to the base NELA and RDEL models, and de-
note the updated models NELA+ and RDEL+. Further, we
also denote voting classifier which takes prediction results
from s3|complete, NELA and RDEL, and then outputs the
majority vote. These 3 are our baseline+ models.

6 Classification Performance, Feature
Weights, and Error Analysis

6.1 Data and gold standard labelsets
Referencing Section 4, we use the following process to gen-
erate subsets of data corresponding to each gold standard
labelset pair ( f , t) 9. For structure models, we denote
D s

( f ,t) as the subset of data that contains structural informa-
tion and features of a domain i only if i∈ f ∨ i∈ t. Similarly,
for baseline and baseline+ models, we denote Db

( f ,t)
as the subset of data that contains news articles and features
of domain i only if (i∈ f ∨ i∈ t)∧ i∈D where D is the com-
plete list of +7K domains that have existing homepages(see
Section 3). This is to ensure performance comparison be-
tween structure and baseline models are done using
only the domains with homepages 10.

6.2 Performance Evaluation and Comparison
Evaluation metrics: Given the class imbalance (e.g.
mainstream to fake news ratio of 4.5:1 for LOOSE and
LOOSE(T)), we use ROC AUC (Bradley, 1997; Kotsiantis
et al., 2006) to evaluate classifier performance.

Prediction Adjustment: Classification of baseline
and baseline+ models is at the article-level (i.e. given an
news article, is it fake?), whereas that of structure is at
domain-level (i.e given a domain, is it a fake news site?). We
use majority-voting of article predictions to adjust prediction
results such that all classification is done at domain-level.
As a robustness check, we compare performance results for
baseline models that predict at i) article-level and at ii)
domain-level using the adjusted majority-voting approach.
Results suggest that AUC scores between them are com-
parable with domain-level prediction actually performing
slightly better (e.g. on average, NELA using majority-voting
has a 0.03 higher AUC score).

8Tokens of newspapers names are removed (e.g. daili beast).
9Here, if a news site exists in both lists f and t, it’s treated as a

fake news site. In other words, f precedes t.
10We also trained baseline models using all domains. Perfor-

mance is comparable, thus results are omitted for brevity.

Performance Comparison: We tried several different
supervised-learning algorithms 11 with parameter tuning 12.
Our results show that the Random Forest classifier outper-
forms the other algorithms for all structure models.
Thus, here we report only on results generated by Random
Forest for structure. We also report on the best results
for NELA (Random Forest) and RDEL (Multi-layer Percep-
tron). AUC scores for all models are summarized in Fig-
ures 5a and 5b. The y-axis denotes the AUC scores, the x-
axis lists F , and finally, the sub-headers are the T values.

Figure 5a contains results for structure and
baseline models. Structure-based models are col-
ored in purple, NELA models in red, and RIDL in green. As
shown, all models show higher performance when trained
using more restrictive definitions of fake and real news
sites (e.g. models trained using (FAKE|3,LST |2(T )) have
considerably higher AUC measures than those trained on
(MIXED,LOOSE(T ))). This pattern is, however, more
mild in structure models, suggesting that our models
are more robust to different news site definitions. Further,
s3|complete significantly outperforms the original NELA
model when the boundaries conditions for fake news
sites are less restrictive, but the NELA model does better
with more strict boundaries. Further, the RDEL model
outperforms the other classifiers when the t = LOOSE(T ),
but is comparable to s3|complete when t = LST |2(T ).
Finally, we note that performance of NELA and REDL
here are also comparable to what’s described in the original
papers (Horne and Adali, 2017; Riedel et al., 2017).

Next, in Figure 5b, we compare baseline models
(drawn in solid lines) to baseline+models (dashed lines).
We observe that NELA+ outperforms base NELA model
when definitions are lax (e.g. when f = LOOSE or f =
FAKE|1). Further, RDEL+ outperforms RDEL across all
pairs of ( f , t). Finally the voting classifier outperforms all
classifiers except for RDEL+.

These observations suggest that i) classifier performance
is dependent on the taxonomy of fake news definitions;

11We select the following commonly used supervised machine
learning algorithms: i) Linear Regression (Press and Wilson, 1978),
ii) Linear Support Vector Machine (SVM) (Suykens and Vande-
walle, 1999), iii) Random Forest (Liaw, Wiener, and others, 2002),
and iv) Multi-layer Perceptron (Gardner and Dorling, 1998), all of
which are implemented by Python’s Scikit-learn library (Pedregosa
et al., 2011). Logistic Regression was used by Tacchini et al. (2017)
in fake news classification, Linear SVM and Random Forest by
Horne et al. (2018). Additionally, Multi-layer Perceptron is a shal-
low artificial neural network used by Riedel et al. (2017) in the
Fake News Challenge stance detection task.

12For parameter tuning, we combine each algorithm with
SearchGridCV (Pedregosa et al., 2011), a function that searches
over specified parameter space for the given estimator. Here, we
use i) StratifiedKFold (cv= 5) as the cross-validation generator and
ii) Area Under the Receiver Operating Characteristic Curve (ROC
AUC), described in Section 6.2, as our scoring metric in Search-
GridCV. For each dataset, D( f ,t), We split it 80/20 for training and
validation. We run SearchGridCV using the 80-split dataset (bal-
anced using upsampling which is shown by prior work (Kotsiantis
et al., 2006) to improve performance), and then test the best esti-
mator returned on the remaining 20-split.



(a) ROC AUC comparison between structure and baseline. (b) ROC AUC comparison between baseline and baseline+.

ii) structure based methods’ performance is surprisingly
comparable to content-based methods; and iii) the perfor-
mance of existing content-based models improve signifi-
cantly when combined with structural features, especially
when definitions for fake and mainstream news sites are lax.

6.3 Feature Weights
In this section, we first assess the volatility of feature weight-
ing of models trained using different golden standard la-
bels. For each classifier c, let W c( f 1, t1), and W c( f 2, t2)
denote the feature weights of c trained using the labelset
( f 1, t1) and ( f 2, t2), we use Pearson’s correlation coef-
ficient (Lawrence and Lin, 1989) to evaluate the correla-
tion between W ( f 1, t1), and W ( f 2, t2). We observe that the
median correlation scores are 0.9 and 0.48 for NELA and
NELA+ respectively, suggesting that features weights are
more stable across pairs of ( f , t) for the original model.
A manual inspection shows that structure features have
more significant weights (both negative and positive) when
NELA+ is trained using ( f , t) pairs of more lax defini-
tions. In comparison, the median correlation score is 0.61
for s3|complete, suggesting that feature weights for struc-
tural models are more volatile across pairs of ( f , t).

Next, we extract the most positive and negative features
of each structure model 13. We first select the top 25 14 most
positive or negative features for each ( f , t). We then deter-
mine the top 5 most frequently occurring features across all
pairs of ( f , t) and write them as stable features. Similarly,
we also select a subset of least frequently occurring features
and denote them as volatile features. Both stable and volatile
features for each structure model are listed on Table 1. As
shown, fake news domains appear to have higher subpage-
to-subpage clustering: i) average clustering coefficient and
ii) motif 16 are both stable positive features. Additionally,
fake news sites also have more skewed tagpath depth and ads
links. In comparison, traditional news sites are associated
with having more unique subpages. This is consistent with
our hypothesis that news organizations are better staffed and
therefore have a more substantive website.

6.4 Error Analysis
In this section, we assess whether models perform better or
worse on classifying certain domains by correlating predic-

13Here, we use results from the Logistic Regression classifier
given Random Forest does not supports signed feature weights.

14We select only the top 10 features instead for s2|subpage given
it has fewer than 50 features.

tion errors with a domain’s i) ideological-leaning, ii) popu-
larity, and iii) age. We obtain data on domain age, popularity,
and ideological-leaning from work by Bozarth et al. (2019).
Here, given c ∈ {NELA,RDEL,s3-complete} (i.e. we com-
pare our complete structure classifier to models from exist-
ing papers), fake and traditional news site lists pair ( f , t),
and the corresponding dataset D( f ,t), we derive E f p( f , t,c)
as the set of domains in D( f ,t)’s validation fold that has been
classified incorrectly by c as false positives. Similarly, we
denote E f n( f , t,c) for false negatives.

Age: Given ( f , t), we first partition each domain i where
i ∈ t ∨ i ∈ t into 4 bins using age: i) age unknown, ii) 33%
percentile (i.e. age percentile calculated to be between 0
and 33%), iii) 66% percentile, and iv) 100% percentile (do-
mains at 100% percentile are the oldest). Next, let binn

f ,t be
the set of domains in bin n. Then, for each classifier c, we
calculate its fraction of false positive error for bin n using
|binn

f ,t∩E f p( f ,t,c)|
|binn

f ,t |
where |binn

f ,t ∩E f p( f , t,c)| is the number of

domains in binn
f ,t that are also in E f p( f , t,c). We then calcu-

late the fraction of false negative error using E f n( f , t,c). We
repeat the process for all combinations of ( f , t) and c.

Popularity: Similar to age, we assign errors into 4 bins
using popularity: i) 25% percentile, i) 50% percentile, i)
75% percentile, and i) 100% percentile. We then calculate
the fraction of error for each bin for each combination of
( f , t) and C using the process described above.

Bias (ideological-leaning): Likewise, we divide errors
into bins: i) unknown, ii) conservative iii) liberal, and iv)
center. We then repeat the aforementioned procedure.

Error analysis results for age, popularity, and bias are
shown in Figures 6a, 6b, and 6c. The x-axis denotes the bins,
the y-axis fraction of error for each bin; each color corre-
sponds to a unique model. As shown, the s3|complete model
has an overall lower false negative rate and a higher false
positive rate, especially when t = LOOSE(T ). For instance,
the average false positive error rate for unpopular domains
(less than < 33% percentile by popularity) by s3|complete is
over 20% when t = LOOSE(T ). We also observe a high false
positive rate for liberal-leaning domains. Given Bozarth et
al. (2019) have shown that unpopular domains are less likely
to be included in fake news lists and conservative critics’
claim of liberal bias in the academia, it’s possible that these
domains are actually fake but not yet labeled. In compar-
ison, the original NELA model has a significantly higher
false negative rate for more recent domains, more popular



Table 1: Top Positive and Negative Features for each structure model. Note, the terms “body”, “head”, “iframe”, “footer” refer to HTML
elements; images of motifs are located in Figure 4b.

model type most.positive most.negative
basic stable ads; number of links; press; onlin; report number of navigation links; domain suffix; newslett; polit; local news

volatile number of nontext tags in the body; number of stlye sheets; editori; food;
term; facebook

photo; depth of head element; tv; number of list tags in body and footer;
donate

subpage stable number of unique outgoing links; average number of / in links; average
clustering coefficient; gini for out degree distribution; motif 10

gini for indegree distribution; number of unique subpages crawled; motif
7 and 13

volatile motif 16 motif 4;
complete stable number fo links; average number of / in links; tagpath depth distribution

skewness; ads; average clustering coefficient
number of unique subpages crawled; tagpath depth standard deviation;
domain suffix; local news; sales

volatile max tagpath depth; copyright; food; number of frames (e.g. iframe) number of image tags in head; staff; blog; motif 16; number of object tags;

(a) Error analysis using age. (b) Error analysis using popularity. (c) Error analysis using ideology

Figure 6: Classification error analysis using a domain’s i) age ii) popularity, and iii) ideological-leaning.

domains, and domains with conservative-bias. Further, error
attributes for RDEL is comparable to NELA, suggesting that
models using same feature types (i.e. content) share similar
error characteristics.

7 Discussion
In this paper, we introduced a new taxonomy of fake and tra-
ditional news definitions using varied boundary conditions.
We then proposed a novel website structure based domain-
level fake news detection model that had demonstrated sur-
prisingly comparable performance to content based bench-
marks. This highlights the potential of determining quality
without inspecting the content and through simpler meth-
ods with ideology-agnostic features. Alternatively, this find-
ing suggests content based methods have a long way to go
if simple structural features provide more predictive power.
Yet, it is also worthwhile to note that fake news producers
can, in the future, invest more resources as they gain in pop-
ularity and revenue to improve their websites.

We then highlighted differences in structural features be-
tween fake and traditional news domains. We found that fake
news sites have more clustered subpages network (i.e. each
subpage is linked to all the other subpages), more ads links,
more iframes. In contrast, mainstream news domains are as-
sociated with more unique subpages, and staff links. More-
over, certain subsets of fake (or traditional) news sites share
the same exact HTML template. Additionally, through er-
ror analysis, we showed that models generated using a par-
ticular category of data (e.g. content) shared similar errors.
More specifically, content-based models had a higher false
negative rate for younger, more popular, and conservative-

leaning domains. In contrast, structure based model had a
slightly higher overall false positive rate. Finally, we em-
phasize that performance of existing content-based models
improved significantly when combined with structural fea-
tures, especially when definitions for fake and mainstream
news sites were lax. In other words, structural factors can be
combined with content features to better detect news sites
that provide articles that are not necessarily completely false
but nevertheless low in content quality.

There are several limitations to our work. First, while
content-based methods are the most prevalent, high-
performing models that use other categories of features such
as user network also exist. Future work should include the
comparison of those models and our structure based ap-
proach. Additionally, focusing on classification errors, it’s
apparent that existing models are biased, in different ways,
against domains with varied ideological-leanings. This is re-
lated to the ongoing conversation on how black-boxed, un-
accountable machine learning models lead to increased in-
equality. Considering the critical importance of ideology in
political communications, future work on fake news detec-
tion should assess model biases particularly in this dimen-
sion and make the results available. Finally, it’s also possi-
ble some of the false positive domains we found are actually
unlabeled fake news sites. Future work should also include
collaborating with fake news list aggregators to identify ad-
ditional fake news domains.
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